

Scope & Sequence

This honors level high school course provides a comprehensive introduction to the fundamental principles of physics. Students will engage in rigorous study, problem-solving activities, and hands-on experimentation to help them understand the laws governing our physical world. Students delve into topics spanning motion, forces, energy, waves, electromagnetism, and the revolutionary concepts of relativity and quantum physics with an emphasis on mathematical applications for modeling natural phenomena.

Lesson 1: Introduction to Physics

"Laws" of physics Proportions and mathematical models Measurement and units Graphing as a modeling tool

Lesson 2: A Brief History of Physics

Natural philosophy Classical physics Modern physics Aristotle, Galileo, Newton, and Einstein

Lesson 3: Vibrations & Waves

Vibrations and energy Period, frequency, and wavelength Amplitude Interference Wave equation

Lesson 4: Sound Waves

Medium of transmission Speed of sound Interference and acoustics Doppler effect

Lesson 5: Light & Color

Electromagnetic waves and the electromagnetic spectrum Energy, frequency, and wavelength Rods and cones Color absorption and emission

Lesson 6: Wave Optics

Reflection and refraction Mirrors and lenses Lensmaker's equation

Lesson 7: Temperature & Heat

Thermal energy Absolute vs relative temperature Melting, freezing, boiling, and condensing State vs temperature and pressure Heat capacity

Lesson 8: Heat Transfer

Conservation of energy Conduction, convection, and radiation Newton's law of cooling

Lesson 9: Thermodynamics

Three laws of thermodynamics Entropy "Zeroth" law of thermodynamics Heat cycles Engines

Lesson 10: Exam 1

Lesson 11: Linear Motion (Part 1)

Frame of reference and measuring motion Speed, direction, and velocity Distance vs time graphs Constant motion

Lesson 12: Linear Motion (Part 2)

Changing motion, acceleration Average speed vs instantaneous speed Distance and velocity Acceleration graphs Acceleration due to gravity

Lesson 13: Two-Dimensional Motion

Vectors/2-D math Changing direction as acceleration Solving simultaneous equations Projectile motion Circular motion

Lesson 14: Newton's Laws of Motion

Newton's first law Inertia and mass Newton's second law Cause and effect Newton's second law Newton's third law

Lesson 15: Specific Forces

Gravity "Normal" force Friction and air resistance Pressure and force Centripetal force

Lesson 16: Momentum

Defining momentum Momentum and Newton's 2nd law Law of conservation of momentum Closed systems and collisions

Lesson 17: Energy of Motion

Defining and measuring energy Potential and kinetic energy Conservation of energy

Lesson 18: Rotational Motion

Similarity between rotational and linear motion Rotational speed and acceleration Linear motion as part of rotational motion

Lesson 19: Rotational Mechanics

Force vs torque Mass vs rotational inertia Rotational inertia of various solid shapes Newton's laws in rotation

Lesson 20: Exam 2

Lesson 21: Electrostatics

Electric charge Polarization Scientific Notation Coulomb's law and problem solving

Lesson 22: Electric Fields

Electric potential Potential differences Fields of point charges Fields of surfaces and shapes Capacitors

Lesson 23: Electric Current

Conventional current Conductors vs resistors Closed vs open circuits Potential and voltage Ohm's law

Lesson 24: Series & Parallel Circuits

Circuit diagrams and features Series vs parallel definitions Ohm's law in series and parallel

Lesson 25: Magnetism

North vs South Strength of force and magnetic fields Magnetic equations

Lesson 26: Electromagnetism

Moving charges Changing fields Interconnectivity Right-hand rule

Lesson 27: Exam 3

Lesson 28: Special Relativity pt. 1

Classical relativity Spacetime Time dilation and time travel Lorentz Transformation

Lesson 29: Special Relativity pt. 2

Length Contraction Energy and Momentum Mass-Energy Equivalence

Lesson 30: Universal Gravitation

Kepler's laws of planetary motion Newton's law of gravity Einstein's general relativity

Lesson 31: Atomic & Nuclear Physics

Atomic structure Nuclear radiation Nuclear fission and fusion

Lesson 32: Introduction to Quantum Physics

Quanta defined Blackbody radiation Planck's constant The photoelectric effect Electron energy levels Standard Model of particle physics

Lesson 33: Quantum Systems

Two-slit interference of light Two-slit Interference of other particles de Broglie Wavelengths Wave functions and Schrodinger's wave equations Heisenberg's Uncertainty Principle

Lesson 34: Quantum Theories (Things Just Got Weirder)

Copenhagen interpretation Schrodinger's cat Pilot wave theory Many worlds theory Quantum tunneling Quantum entanglement

Lesson 35: Exam 4