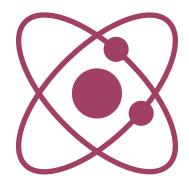


EXPERIENCE CHEMISTRY


STUDENT GUIDEBOOK

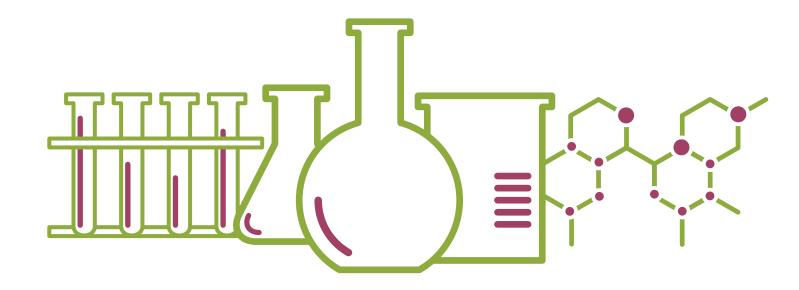
Luke & Trisha Gilkerson with Bekah Kohlmeier

Experience Chemistry: Student Guidebook Journey Homeschool Academy Copyright © 2021 by Trisha Gilkerson All rights reserved. This workbook is licensed for students enrolled in *Experience Chemistry* to use. You may make copies of this workbook for any student enrolled in this course, but you may not make copies for individuals not enrolled or for any other purpose without prior written permission. This document may not be shared with others electronically except for purposes of sending to a printer.

For permissions requests please write the publisher at: trisha@intoxicatedonlife.com

If you would like to purchase another copy of this book, please visit: intoxicatedonlife.com/store

WELCOME TO EXPERIENCE CHEMISTRY


This Student Guidebook was designed for students in the Experience Chemistry online course. Simply follow along with the weekly lecture videos and fill in the blanks as you go. Sections for extra notes have been provided as well: use these to draw helpful diagrams or take extra notes you find particularly useful during the lecture. At the beginning of each lesson, you'll find a list of terms that might be unfamiliar to you. Be sure to familiarize yourself with these terms and use them as you spend time studying each week.

Along the way, you'll also find study guides for the quarterly exams. Each exam covers material from that quarter only, and these study guides will provide you with terms, questions, and concepts you should be familiar with before taking your exams.

We're excited to have you join the adventure as we explore the world God made!

We'll see you inside the course!

Trisha Gilkerson

LESSON 14

TYPES OF CHEMICAL REACTIONS

Every time a car burns fuel to move down the road, it's a chemical reaction. Every time you see rust on a piece of metal, it's because of a chemical reaction. There are different types of reactions, and it is important that we can recognize them. If we know these types, we can predict the products that will form in reactions during a lab. In this lesson, we'll learn how to differentiate between the different types of reactions and what happens to elements and compounds when they react in different ways.

Vocabulary

Combustion Double replacement Synthesis

Decomposition Single replacement

OUTLINE & NOTES LESSON 14A: TYPES OF CHEMICAL REACTIONS

l. Chemica	I Reaction #	1: Synthesis	•	
A. Two separa	te elements	to form		
B. Example: so	odium + chlorine gas -	→ sodium chlori <mark>d</mark> e		
C. Equation:				
D. Balanced ed	quation:			
	+			
I. Chemica	l Reaction #	2: Decompo	sition	
A. One compo	ound	into		smaller parts
B. Example: el	lectrolysis of water			
1. Equation:				
2. Balanced	equation:			
C. Example: so	olid potassium chlorat	e, when heated, produ	ıces potassium chloride	e gas and
oxygen gas				
1. Equation:				
2. Balanced	equation:			

A	plus a	react to form	n a different
	_ and a different		
_	luminum plus aqueous hydi	rochloric acid forms aq	ueous aluminum chlori
and hydrogen ga	S		
1. Equation:			
2. Balanced equat	ion:		
3. Will this reaction	on occur? Why?		
	on occur? Why?		
Chemical F	Reaction #4: Do	uble Replace	ement
Chemical R Starts with	Reaction #4: Do	uble Replace	ement ments
Chemical R Starts with	Reaction #4: Do	uble Replace	ement ments
Chemical R Starts with	Reaction #4: Do	uble Replace	ement
Starts with	Reaction #4: Doato form two	uble Replace	ement
Starts with Example: strontion oxide (most similar)	Reaction #4: Doato form two um oxide plus iron (III) bro	uble Replace dded together, and eler	ement
Example: strontioxide (most simi	to form two um oxide plus iron (III) bro	uble Replace dded together, and eler	ement ments
Starts with Example: strontion oxide (most similar)	to form two um oxide plus iron (III) bro	uble Replace dded together, and eler	ement
Example: strontioxide (most simi	to form two um oxide plus iron (III) bro	uble Replace dded together, and eler	ement
Example: strontioxide (most simi	to form two um oxide plus iron (III) bro	uble Replace dded together, and eler	ement
Example: strontioxide (most simi	to form two um oxide plus iron (III) bro	uble Replace dded together, and eler	ement ments
Example: strontioxide (most simi	to form two um oxide plus iron (III) bro	uble Replace dded together, and eler	ement ments

V. Chemical Reaction #5: Combustion

A. A reaction where ______ plus _____ yields

and _____

- **B.** Example: methane (CH₄) combustion
 - 1. Equation:
 - 2. Balanced equation:

VI. Practice

$$A. 3 \text{ AgNO}_3 + \text{K}_3 \text{PO}_4 \rightarrow \text{Ag}_3 \text{PO}_4 + 3 \text{ KNO}_3$$

1. Type of reaction: _____

$$\mathbf{B}_{\bullet} \ \mathrm{H_{2}CO_{3}} \rightarrow \mathrm{H_{2}O} + \mathrm{CO_{2}}$$

1. Type of reaction:

C.
$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

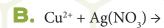
1. Type of reaction:

D.
$$P_4 + 5 O_2 \rightarrow 2 P_2 O_5$$

1. Type of reaction:

1. Type of reaction:

Activity Series of Metals		
Most reative	lithium	Li
	rubidium	Rb
	potassium	К
	barium	Ва
	strontium	Sr
	calcium	Ca
	sodium	Na
	magnesium	Mg
	beryllium	Ве
	aluminum	Al
	manganese	Mn
	zinc	Zn
	cadmium	Cd
	iron	Fe
	cobalt	Со
	nickel	Ni
	tin	Sn
	lead	Pb
	(hydrogen)	(H ₂)
	copper	Cu
	mercury	Hg
	silver	Ag
T	palladium	Pd
▼	platinum	Pt
Least reactive	gold	Au


Activity Series of Non-Metals		
Most reative	flourine	F
	chlori <mark>ne</mark>	CI
	oxygen	0
	bromine	Br
L	iodine	ı
	sulfur	S
Least reactive	(red) phosphorus	Р

OUTLINE & NOTES LESSON 14B: TYPES OF CHEMICAL REACTIONS

	In the lab,	wha	t will happen in a reaction
E	If we know the	, we can predict the	
II.	Steps of Prediction		
A	Write if nece	ssary	
E	Use reactants to determine		_
C	Based on type of reaction,		-
	1. DO NOT	from one side to anothe	r;
	and		
	2. Similar elements and ions		
	3. Combustion always ends with _	and	·

III. Examples


1 Desertants		
1. Reactants:		
2. Type of reaction:		
3. Equation:		
4 Palancad aquation.		
4. Daranced equation:		
		-
4. Balanced equation:5. Will the reaction occur?		

- 1. Type of reaction: _
- 2. Equation:
- 3. Balanced equation:

- 4. Will the reaction occur? _____
- C. Na + $O_2 \rightarrow$
 - 1. Type of reaction:
 - 2. Equation:
 - 3. Balanced equation:

D.	C ₂ H ₁₄	+ O,	\rightarrow
	/ 14	2	

1. Type of reaction:

2. Equation:

3. Balanced equation:

E. HgO ⇒

1. Type of reaction:

2. Equation: HgO $\stackrel{\Delta}{\Rightarrow}$

3. Balanced equation:

- 1. Type of reaction: _
- 2. Equation:
- 3. Balanced equation:

G. KF + Pb₂(SO₄)₃
$$\Rightarrow$$

- 1. Type of reaction:
- 2. Equation:
- 3. Balanced equation:

EXPERIENCE CHEMISTRY

STUDENT LAB GUIDE

Luke & Trisha Gilkerson with Bekah Kohlmeier

LESSON 14

TYPES OF CHEMICAL REACTIONS

In this lab you'll have the opportunity to watch chemical reactions take place. You'll observe, predict, classify, and write balanced chemical equations that illustrate the chemical reactions you complete.

Supplies

- Disposable pipettes
- ▲ 2 small beakers
- ▲ Glass funnel (optional)
- ▲ 0.75 oz packet active dry yeast
- Liquid dish soap
- Penny
- ▲ Small piece of magnesium ribbon
- ▲ 1 g iron (III) chloride
- ▲ 1 g copper (II) chloride

- ▲ 3 test tubes
- ▲ 50 mL graduated cylinder
- ▲ 30 mL of 30% hydrogen peroxide
- ▲ 150 mL Erlenmeyer flask
- ▲ Food coloring (optional)
- ▲ 0.25 g silver nitrate
- ▲ 10 mL hydrochloric acid
- ▲ 2.5 g sodium hydroxide
- ▲ 0.5 g sodium phosphate
- le Pie tin, baking dish, or any flat surface with edges

Instructions

- 1. Combustion of ethanol (C₂H₅OH)
 - a. Watch the demonstration video for the combustion of ethanol (C₂H₅OH).
 - b. Record your observations for the reaction, identify the type of reaction, then write and balance an equation for the reaction.

2. Aluminum and iodine

- a. Watch the demonstration video for the reaction between aluminum and iodine.
- b. Record your observations for the reaction, identify the type of reaction, then write and balance an equation for the reaction.

3. Breakdown of hydrogen peroxide

- a. Place a 150 mL Erlenmeyer flask on a pie tin (or other flat surface with edges).

 Measure out 30 mL of 30% hydrogen peroxide in a graduated cylinder and add to the flask.
- b. Add a squeeze of liquid dish soap and a few drops of food coloring (optional) to the hydrogen peroxide and swirl the flask for a few seconds to mix them together.
- c. Quickly pour the packet of active dry yeast into the mixture and take a step back.
- d. Record observations for the reaction, identify the type of reaction, then write and balance an equation for the reaction.

4. Copper (+2) and silver nitrate

- a. Create a solution of silver nitrate by first measuring out 25 mL of water in a graduated cylinder. Pour into a small beaker.
- b. Add 0.25 g of silver nitrate into the beaker. Stir until dissolved.
- c. Place a penny into a small beaker. Using a disposable pipette, add the silver nitrate solution to the beaker until the penny is completely submerged.
- d. Let the beaker sit for a few minutes, then record observations for the reaction, identify the type of reaction, then write and balance an equation for the reaction.

5. Magnesium and hydrochloric acid

- a. Place a small piece of magnesium ribbon into a test tube. Use a disposable pipette to add drops of hydrochloric acid to the test tube until the piece of magnesium is covered.
- b. Record observations for the reaction, identify the type of reaction, then write and balance an equation for the reaction.

- 6. Sodium hydroxide and iron (III) chloride
 - a. Create a solution of sodium hydroxide by first measuring out 10 mL of water in a graduated cylinder. Pour into a small beaker.
 - b. Add 2.5 g sodium hydroxide to the beaker. Stir until dissolved.
 - c. Create a solution of iron (III) chloride by first measuring out 10 mL of water in a graduated cylinder. Pour in a second small beaker.
 - d. Add 1 g iron (III) chloride to the second beaker. Stir until dissolved.
 - e. Using a disposable pipette, add 20 drops of sodium hydroxide to a test tube. Using a different disposable pipette, add 20 drops of iron (III) chloride to the test tube. Swirl to thoroughly mix the two solutions.
 - f. Record observations for the reaction, identify the type of reaction, then write and balance an equation for the reaction.
- 7. Sodium phosphate and copper (II) chloride
 - a. Create a solution of copper (II) chloride by first measuring 10 mL of water in a graduated cylinder. Pour into a small beaker.
 - b. Add 1 g copper (II) chloride to the beaker. Stir until dissolved.
 - c. Create a solution of sodium phosphate by first measuring 10 mL of water in a graduated cylinder. Pour into a second small beaker.
 - d. Add 0.5 g sodium phosphate to the second beaker. Stir until dissolved.
 - e. Using a disposable pipette, add 15 drops of copper (II) chloride to a test tube. Using a different disposable pipette, slowly and carefully add five drops of sodium phosphate to the test tube.
 - f. Record observations for the reaction, identify the type of reaction, then write and balance an equation for the reaction.
- 8. Clean up everything from the lab. All solids can go in the garbage. All liquids can be poured down the sink with lots of water.

Experiment 1	Combustion of ethanol (C ₂ H ₅ OH)
Observations PoloNiUM	At Rn
Type of reaction	UNUNSEPTIUM UNUNOCTIUM
Balanced chemical equation	Uus Uuo

Experiment 2	Aluminum and iodine
Observations	
Type of reaction	
Balanced chemical equation	

Experiment 3	Breakdown of hydrogen peroxide (H ₂ O ₂)
Observations	
Type of reaction	
Balanced chemical equation	

Experiment 4	Copper (+2) and silver nitrate
Observations	
Type of reaction	
Balanced chemical equation	

Experiment 5	Magnesium and hydrochloric acid
Observations	
Type of reaction	
Balanced chemical equation	

Experiment 6	Sodium hydroxide and iron (III) chloride
Observations	
Type of reaction	
Balanced chemical equation	

Experiment 7	Sodium phosphate and copper (II) chloride
Observations	
Type of reaction	
Balanced chemical equation	

BORON

CARBON

NITROGEN

OXYGEN

FLUCKIFE

OXYGEN

OXYGEN

FLUCKIFE

OXYGEN

OXYGEN

FLUCKIFE

FLUCKIFE

OXYGEN

FLUCKIFE

OXYGEN

FLUCKIFE

FLUCKIFE

OXYGEN

FLUCKIFE

FLUCKIFE

OXYGEN

FLUCKIFE

OXYGEN

FLUCKIFE

FLUCKIFE

OXYGEN

FLUCKIFE

LAB REPORT

LESSON 14

Write a lab report that includes the title, introduction, and the data tables above. Also include any pertinent safety information in your lab report.

AB NOTES
N UP (110)
A15